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SUMMARY

This paper presents a general methodology for studying instabilities of natural convection flows enclosed
in cavities of complex geometry. Different tools have been developed, consisting of time integration of the
unsteady equations, steady state solving, and computation of the most unstable eigenmodes of the
Jacobian and its adjoint. The methodology is validated in the classical differentially heated cavity, where
the steady solution branch is followed for vary large values of the Rayleigh number and most unstable
eigenmodes are computed at selected Rayleigh values. Its effectiveness for complex geometries is
illustrated on a configuration consisting of a cavity with internal heated partitions. We finally propose to
reduce the Navier–Stokes equations to a differential system by expanding the unsteady solution as the
sum of the steady state solution and of a linear combination of the leading eigenmodes. The principle of
the method is exposed and preliminary results are presented. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: Arnoldi–Krylov method; flow instabilities; natural convection; Newton’s method; numer-
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1. INTRODUCTION

Computation of flow instabilities is certainly one of the most fascinating and challenging
aspects of the present computational fluid dynamics. The aim of hydrodynamic instability
theory is to predict the values of the parameters at which instabilities occur, the nature of the
instability (steady or unsteady, supercritical or subcritical), the type of solution that results
from the instability, the modification of the base flow solution that results from the non-linear
interactions of the unstable modes and the subsequent route to chaos. Mastering or promoting
these instabilities, one aspect of active fluid mechanics, is also a very challenging prospect.

As soon as the geometry involves more than one inhomogeneous spatial direction, one
generally lacks analytically known base flow solutions and therefore the stability analysis has
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to be carried out numerically by resolution of the governing equations. This is usually done by
direct integration of the unsteady Navier–Stokes equations. This methodology places severe
constraints on the numerical algorithms, which must be both spatially and time accurate. This
has in particular promoted the development of spectral and pseudo-spectral spatial Chebyshev
approximations in space coupled to second-order time stepping schemes. It is indeed true that
these unsteady methods have proven extremely successful in predicting loss of stability of
several classes of flows, although like any other method, they have to be used with sufficient
grid resolution. While these methods are still heavily used in this context and also to perform
direct numerical simulations of flows in simple geometries, they have also shown their
limitations in establishing bifurcation diagrams and for complex geometries.

For the purpose of investigating the stability of flows in general, it has been recognized [1]
that it is highly desirable to have efficient solvers to follow the path of steady solution
branches even when they become unstable. Designing a solver to compute the unstable steady
solutions is not a trivial matter since it is almost mandatory to use Newton’s iterations,
coupled in general to arc length continuation. Newton’s iterative technique makes use of the
Jacobian of the equations, which is on the order of three to four times the number of
discretization points in two spatial dimensions. When the instability takes place at large values
of the Reynolds or Rayleigh number, as is the case for flows between rotating disks or for
natural convection in differentially heated cavities, the number of discretization points needed
to approximate the solution can become very large. Building the corresponding Jacobian
matrix may also become difficult, in particular in the context of finite volume staggered
meshes,1 although it is very sparse. Furthermore, the incompressibility constraint in velocity–
pressure formulation makes this matrix not easily invertible. Matrix free methods are therefore
needed, i.e. a method which requires only the evaluation of the action of the Jacobian on a
vector field to produce a solenoidal vector field, but this is not an easy task either due to the
bad conditioning of the matrix.

An elegant solution to this problem was proposed by Tuckerman [2,3] based on the fact that
a family of efficient time stepping algorithms have been developed for integrating the unsteady
equations. These are generally based on an implicit treatment of the viscous terms and an
explicit treatment of the non-linear terms. She noted that the operator consisting of the
difference between the solutions at two consecutive time steps has the same roots as the steady
state operator; a simple but far-reaching observation indeed, since it turns out that the
Jacobian of the incremental operator is a straightforward modification of the initial time
stepping scheme and can thus be used very efficiently in the Newton’s iterations. To date, most
implementations have been performed for simple geometries in which the unsteady Stokes
problem is solved by direct algorithms such as implicit influence matrix methods either with
finite differences or spectral methods [4]. Our experience with this algorithm has shown us that
a key point in the efficiency and global performance of the method seems related to the fact
that the time stepping solver simultaneously enforces the discrete momentum and continuity
equations (Dr LS Tuckerman, private communication) although there have been successful

1 This objection does not hold for the finite element community, which has usually employed the true Newton’s
method, as it did not benefit from the natural separability of the operators, even on structured meshes.
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implementations with fractional step algorithms [5,6]. One of our objectives in this work is to
propose an extension of the method applicable to convection dominated flows in moderately
complex geometries such as, for example, natural convection in cavities with internal parti-
tions. To this aim we have implemented an iterative solver of the unsteady Stokes problem
discretized on a classical staggered grid based on Vanka’s multigrid scheme [7].

Once a steady solution is obtained, its linear stability can be investigated in several ways.
One possibility is to perform time integration of the linearized equations governing the
fluctuations. This is most efficiently done by adapting an unsteady code such as a fractional
step method for the integration of the equations governing the fluctuating quantities with the
quadratic non-linearities and replaced by linearized quantities about the steady solution.
Integrating these unsteady equations will then eventually ‘polarize’ the fluctuating solution
along the most unstable (or least stable) eigenmode. This method works generally well if the
few most unstable eigenmodes are sufficiently far apart although it is necessary to use small
enough time steps so that it may require integrating over several tens or hundreds of thousands
of time steps in order for the solution to polarize. It can also be highly non-monotonic in the
sense that, even if the base flow solution is stable, the energy of the fluctuations can grow
substantially before reaching its asymptotical decaying rate. The amplitude of this energy
growth is related to the non-normality of the Jacobian [8], which increases as the relative size
of the viscous terms to the convective terms decreases.

Another technique is to compute the spectrum of the Jacobian which gives access to the
Jacobian eigenvalues. The solution will be linearly stable if all eigenvalues are of negative real
part, unstable otherwise. Some implementations of this methodology have been based on an
explicit representation of the Jacobian and on the use of generalized eigensolvers such as QR
algorithms [9]. This approach seems limited to configurations which undergo instability at
small Reynolds or Rayleigh number values, thus amenable to small or moderate spatial
resolutions. When this is not the case, the memory requirements for storing the Jacobian can
become prohibitively large. Further, it is even useless to compute the whole spectrum since it
is only those eigenvalues of the Jacobian of the largest real part, which are of interest. These
two remarks have led to the development of Arnoldi–Krylov algorithms, which allow for the
computation of a selected part of the spectrum using matrix free methods. An invariant low
dimensional subspace is determined by the repeated action of the Jacobian operator on an
initial iterate; the corresponding eigenmodes are then computed in this space. This was done
in this work by using the ARPACK library [10].

Our last objective is to establish a methodology to reduce the dynamics of the corresponding
flows to a low dimensional dynamical system. We propose to expand the unsteady solution in
a basis consisting of some of the most unstable eigenmodes. After substitution of this
expansion in the governing equations, obtaining the dynamical system requires taking the inner
product with the orthogonal functions, which are the eigenmodes of the adjoint of the
Jacobian. It is also well known that these adjoint eigenmodes are instrumental for the purpose
of controlling the flow [11].

This paper is organized as follows: we will present in the next section the equations that
govern the flows and configurations in which we are interested. The following three sections
will be devoted to the description of the numerical algorithms needed throughout this work.
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First, the main features of the unsteady algorithm that underlie the whole work will be
reminded.

Then, the computation of branches of steady solutions will be addressed and its efficiency
will be illustrated by computing the solutions on the steady branch for the differentially heated
cavity of aspect ratio 4 for values of the Rayleigh number more than one order of magnitude
above the critical value and for a cavity with internal heated partitions representative of
cooling of electronic equipment. The following section will address the determination of the
spectrum of the Jacobian of the Navier–Stokes equations linearized about the solutions on the
steady branch. Illustrative examples will be given for the corresponding configurations.

Lastly, we will address the determination of the adjoint Jacobian spectrum and the principle
of generating the dynamical system will be discussed.

2. GOVERNING EQUATIONS

The class of flows in which we are interested are modelled with the Navier–Stokes equations
in the Boussinesq approximation. The fluid is characterized by constant kinematic and thermal
diffusivities � and � respectively, assumed to be constant. It is enclosed in a two-dimensional
cavity of height H and width l, corresponding to a vertical ratio aspect RF=H/l. The
corresponding equations are made dimensionless by introducing Lref=H, Vref= (�/H)Ra1/2

and tref= (H2/�)Ra−1/2 as reference quantities for length, velocity and time, where Ra is the
Rayleigh number based on H (=g�H3�T/��) and Pr (=�/�) is the fluid Prandtl number.
The dimensionless temperature is defined as �= (T−T1)/(T2−T1), where T2 and T1 are the
hot and cold temperatures applied at cavity walls. The governing equations can then be cast
in the following non-dimensional form:
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where t is the time, u and w are the velocity components in the x (horizontal) and z directions
respectively and P the dimensionless deviation from the hydrostatic pressure. In these
equations, �2 is the laplacian operator (�2/�x2+�2/�z2).

We have considered two geometrical configurations. The first one is the classical differen-
tially heated cavity (Figure 1). The left wall is maintained at the hot temperature, the right one
at the cold temperature whereas the walls at top and bottom are adiabatic. We will consider

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 175–208



GENERAL METHODOLOGY FOR FLOW INSTABILITIES 179

Figure 1. Problem geometry and temperature boundary conditions for differentially heated cavity (left)
and partitioned cavity (right).

a cavity of aspect ratio H/l=4, which was investigated in detail in the past [12]. This will help
demonstrate the efficiency of the methods described hereafter. The second geometrical config-
uration is representative of problems met in passive cooling of electronic equipment. It consists
of a square cavity with four internal heated vertical plates featuring electronic boards (Figure
1). The internal plates are heated while the outer vertical walls are cold, the top and bottom
walls being adiabatic. This will help illustrate the capability of the methodology for (relatively)
complex geometries.

3. NUMERICAL ALGORITHMS

As said in Section 1, investigating the stability of the solutions of the Navier–Stokes equations
require the joint use of several algorithms either capable of integrating the unsteady equations
or of solving the steady state equations. Although the main emphasis of this paper is on the
steady state solver and the subsequent determination of the Jacobian spectrum, we first begin
by recalling briefly, for the sake of completeness, the basic unsteady time stepping scheme used
to integrate the unsteady Equations (1)– (4).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 175–208
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3.1. Unsteady sol�ing

For the stability problem of interest, first-order time stepping is not adequate since, from
experience, the amplitude of the fluctuations depends strongly on the time step and the use of
a higher-order time stepping scheme is mandatory. We use a second-order scheme fractional
step method, which is based upon two main ingredients [13]:

– the time derivative in the momentum and in the energy equations is approximated by a
second-order backward differentiation formula

�f n+1

�t
=

3f n+1−4f n+ f n−1

2�t
+O(�t2)

– the linear terms L are implicitly evaluated at time (n+1)�t, whereas the non-linear part NL
is explicitly evaluated at time (n+1)�t by means of a linear extrapolation

NLn+1=2NLn−NLn−1

This time stepping scheme yields a Helmholtz-type problem for (un+1, �n+1, pn+1, �n+1) in
which the energy equation (4) is decoupled from the momentum (2)– (3) and continuity (1)
equations

(��I−�2)�n+1=S�
n,n−1

(��I−�2)Vn+1+�pn+1=S�
n,n−1

� · Vn+1=0

where ��=3�Ra/2�t and ��=��/Pr. The source terms S�
n,n−1 and S�

n,n−1 contain all the
quantities which are evaluated at the previous time steps.

The velocity–pressure coupling is handled by using an incremental projection method [14]
which classically consists in two steps:

– a prediction step in which a provisional velocity field V* is computed

(�I−�2)V*= −�pn+Sn,n−1 (5)

V*=0 on � (6)

– a projection step in which V* is expressed, using the Helmholtz decomposition theorem, as
the sum of its divergence free part, which is called Vn+1, and of its irrotational part, which
can be written ��, i.e.
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V*=Vn+1+�� (7)

� · Vn+1=0 (8)

Vn+1 · n=0 on � (9)

The prediction step thus yields two Helmholtz equations that can be solved independently.
Each one of the three Helmholtz equations for temperature or both velocity components
gives rise, after space discretization, to a linear system of equations which can be solved
using iterative matrix free methods such as GMRES [15]. An alternate way is to solve these
linear systems by means of a non-iterative classical Peaceman–Racheford alternating direct
implicit (ADI) scheme, in which second-order time accuracy is retained if one reformulates
the Helmholtz equation (5) in an Helmholtz equation for the increment between two
consecutive time steps.

The projection step can be recast, setting �=2
3�t�, as

Vn+1=V*−
2
3

�t�� (10)

� · Vn+1=0 (11)

Vn+1 · n=0 on � (12)

This projection is actually performed by taking the divergence of (10), which yields a
Poisson-type equation for �, which reads

� · ��=
3

2�t
� · V* (13)

�� · n=0 on � (14)

This equation is solved most efficiently by a multigrid technique. Note that the use of
classical staggered grid discretization results in the fact that the corresponding discrete
problem has a kernel of dimension 1 and that the imposed boundary condition (6) ensures
that the associated compatibility condition is automatically satisfied. The computation of �

allows for the determination of Vn+1 and pn+1 according to

Vn+1=V*−
2
3

�t�� (15)

pn+1=pn+� (16)
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One should note that the use of these ingredients (incremental projection method and
incremental ADI formulation or GMRES solving for the uncoupled Helmholtz equations),
allows one to get the exact discrete solution of the coupled energy, momentum and continuity
equations if the solution reaches a steady state.

This time stepping scheme can be trivially modified, once a steady state solution U0 has been
obtained (which is the subject of the next section), to integrate the Navier–Stokes equations
expressing the unsteady solution as U0+U� , where U� is the fluctuating part of the solution.
Note that this decomposition allows for the integration of full non-linear or of the linearized
equations, thus allowing one to determine the nature (sub- or supercritical) of the first
bifurcation.

3.2. Steady state sol�ing

3.2.1. Algorithm description. The steady state solutions of Equations (1)– (4) satisfy
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Let us call U0= (ū, w̄, P� , �� ) such a steady state. In shorthand notation, U0 satisfies

(L−N(U0)) · U0=0 (21)

with the constraint that the velocity field (ū, w̄) be divergence free. Solving these equations
directly is not easy even when the corresponding solution is stable. Because they are non-linear,
iterative techniques must be used. Several algorithms have been developed for this purpose
although the convergence of most of them degrades as the Rayleigh number increases, i.e.
when the equations become increasingly convection-dominated. Solving for an unstable steady
state solution is far more difficult because iterative techniques based on pointwise relaxation
generally fail to converge when the relaxation operator is not definite, and Newton’s methods,
long used in the finite element community but no so much in the context of finite differences
or finite volumes discretizations, seem preferable. Starting from an initial guess U0, one
Newton step consists of computing an increment �Uk=Uk+1−Uk which is the solution of

(L−DNU k) · �Uk= − (L−N(Uk)) · Uk (22)
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where ((L−DNU k)=LU k) is the Jacobian of the non-linear operator about the current iterate
Uk. It is again understood that the velocity components of the increment must be divergence-
free. It is well known that this method converges quadratically once Uk gets sufficiently close
to U0.

While this procedure is simple in principle, its application to the incompressible equation
raises many difficulties. The first one is due to the size of the Jacobian, typically 4×NI×NJ
(where NI and NJ are the number of grid points in each spatial direction) when dealing with
the two velocity components, pressure and temperature. The order of the Jacobian can thus
become prohibitively large for problems in which the instability occurs at large values of the
Rayleigh number and which therefore need fine mesh sizes to be adequately resolved. Second,
it is often difficult to provide an explicit matrix representation of the Jacobian. Lastly, even if
this Jacobian is made available, its inversion it virtually impossible due to its poor
conditioning.

While the direct inversion of the full steady non-linear (21) or linearized (22) equations is
almost impossible, it turns out that efficient schemes have been derived to solve the unsteady
Stokes problem. This operator stems from the time discretization of the unsteady non-linear
equations (1)– (4) using an implicit time stepping scheme for the viscous diffusion terms
coupled to an explicit treatment of the non-linear terms. Such a first-order scheme can be
written as

Un+1−Un

�t
=L · Un+1−N(Un) · Un (23)

where it is again understood that the velocity field which is part of Un+1 be divergence free.
Equation (23) can be cast into the following form:

(I−�tL)Un+1= (I−�tN(Un))Un (24)

Efficient schemes have been developed to integrate these equations either for the velocity–
pressure formulation or for the two-dimensional stream function–vorticity formulation. They
are generally based either on the direct inversion of the Uzawa algorithm or on so-called
influence matrix techniques that make use of the linear relationships between the pressure and
the divergence of the velocity field at the boundary of the computational domain in the
velocity–pressure formulation or between the vorticity and normal derivative of the stream
function at the boundary in the stream function–vorticity formulation [16–19]. These al-
gorithms are generally restricted to simple geometries, as the building of the influence matrix
can become complex for irregular geometries, in addition to the fact that most of these
methods use direct methods for the inversion of the Helmholtz-type equations. Due to the
explicit treatment of the non-linear terms these methods suffer from conditional time step
stability criteria, which may require integrating for a large number of time steps, in particular
when approaching bifurcation points.

Tuckerman [2,3] showed how to make use of such algorithms to compute quite easily the
steady state solution. Let us call E�tUn= (Un+1−Un)/�t, where n and n+1 represent two
consecutive time steps. From Equation (24), one has
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E�tU
n=

(I−�tL)−1(I−�tN(Un))−I
�t

Un (25)

=(I−�tL)−1(L−N(Un))Un (26)

and E�tU=0 has as roots the steady solutions of Equation (21), since (I−�tL)−1 is
non-singular. Applying Newton’s method to E�tU=0 is equivalent to determining increments
�Uk to the current iterate Uk that are solutions of the linear system

DE�t�Uk= −E�tUk (27)

where DE�t is the Jacobian of E�t evaluated on Uk. It is easy to see that

DE�t= (I−�tL)−1(L−DNU k) (28)

=
(1−�tL)−1(I−�tDNU k)−I

�t
(29)

where DNU k is the Jacobian of N evaluated on Uk. Starting with an initial guess U0, for each
Newton iteration, the right-hand side of Equation (27) is computed by integrating over one
time step the unsteady non-linear equations and evaluating the increment from Un to Un+1.
The increment �Uk can then be computed using matrix the free methods (we have used
GMRES [15]) which only require computing the action of the operator DE�t on a given vector.
One such evaluation is equivalent to integrating over one time step the unsteady Stokes
problem.

Note that the time step �t acts as a convergence parameter and should be chosen in order
to improve convergence of the global iterative scheme. Numerous experiments have shown that
�t should be taken very large (104 or larger). In this case the unsteady term in the unsteady
Stokes operator becomes negligible and one essentially deals with the Stokes operator, which
is strongly elliptic. This remark turns out to be essential when solving the Stokes operator with
iterative methods, which are needed if one wants to address relatively complex geometries.

3.2.2. Spatial discretization. We have chosen to discretize the equations using the classical
staggered grid arrangement in which the computational domain is covered with grid cells. The
scalar variables, pressure and temperature, are defined at cell centres, whereas the velocity
components are defined at the cell boundaries. If the domain is covered with NI×NJ cells in
the x- and z-direction respectively, the total number of unknowns is thus (NI+1)NJ+
NI(NJ+1)+2×NI×NJ. The diffusive and convective fluxes are discretized with centred
differences.

3.2.3. Solution of the unsteady Stokes problem. As already said, a very efficient Stokes solver
is needed, since it is called on many times. Previous implementations have generally made use
of direct Stokes solvers [4]. For complex geometries, iterative Stokes solvers are more flexible
and seem therefore preferable. A further requirement is that this solver remain efficient for
high spatial resolutions, since the problems we want to address are characterized by thin wall
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boundary layers that require good spatial resolutions as the Rayleigh number increases.
Amongst all iterative methods, multigrid methods are known to achieve an efficiency that does
not deteriorate as the spatial resolution increases [34,35]. They work best for strongly elliptic
operators and, in view of the remark made above, they therefore seem to be ideally suited for
our purpose.

We have thus implemented the multigrid procedure proposed by Vanka [7]. On a given grid
the local smoother consists of solving for each cell the linear system of order 5 made of four
momentum equations (two in each direction) coupled to the continuity equation. Whereas we
have been somewhat unsuccessful in the past in applying this method to the full non-linear
equations at large Rayleigh number, its application here is much more straightforward. Since
we are dealing with a linear problem, a straightforward correction scheme can be used instead
of the full multigrid algorithm FMG FAS used in the non-linear case, where the current
solution must be defined on the coarse grids. We have chosen to define the linear operators
directly on the coarse grids as the natural discretization of the operators on the corresponding
grids. The restriction of the residuals of the momentum and continuity equations is defined as
the weighted sums of the residuals. The extension of the corrections is defined as bilinear
interpolations.

3.2.4. Adaptations for complex geometries. This algorithm is made to work for ‘complex’
geometries by defining a phase indicator, defined at the same location as the scalar variables,
which takes value 1 for a fluid cell and 0 for a solid cell. This phase indicator is defined on the
fine grid and its values on the coarser grids are defined recursively in the following manner.
Since a coarse cell corresponds to the clustering of four fine cells, it is assumed to be a solid
cell iff all four fine cells are solid, otherwise it is considered a fluid cell. With the help of this
phase indicator all the operators and their boundary conditions can be defined automatically
on all grids.

4. NUMERICAL VALIDATION

4.1. Differentially heated ca�ity

As a test, the natural convection flow in a differentially heated cavity of aspect ratio 4 is
computed. In such a cavity with adiabatic top and bottom walls, the steady solution looses its
stability at a Rayleigh number Ra just above 108. (The critical width based Rayleigh number
is RaW=1.61×106, see [12].)

The implementation of Newton’s method is first validated by computing the steady solution
for Ra=6.4×107, that is a Rayleigh number value less than the critical value. This required
eight Newton’s iterations to decrease the residuals of the temperature, momentum and
continuity equations to machine accuracy, and the total number of Stokes solves was less than
1000. Each Stokes solve required approximately 15 multigrid V-cycles. The corresponding
solution is compared with the steady state solution of the non-linear problem obtained with the
time integration scheme described in Section 3. Figure 2 displays the time evolution of the L2

norm of the difference between the transient solution and the steady Newton solution for
Ra=6.4×107. The initial condition for the time integration was the steady solution for
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Figure 2. Temporal evolution of the L2 norm of the difference between the unsteady solution and the
steady Newton solution: ��i, j (�ij(t)−�ij(Newton))2 at Ra=6.4×107 for differentially heated cavity.

Temperature, full line; vertical velocity, dotted line.

Ra=6.4×106. It indeed shows that, as time goes to infinity, the L2 norm of the difference
decreases to machine accuracy, confirming that both procedures allow us to obtain exactly the
same discrete solution of the coupled equations. It should also be noted that reaching the
steady state with the time integration scheme to within machine accuracy required more than
100 000 time steps, as the time step was limited for stability constraints to 0.004 (this number
would obviously increase as the Rayleigh number would approach the critical value). This
should be compared with the number of Stokes solves, although the amount of work for one
multigrid Stokes solve is much larger than that needed to advance one time step in the
prediction–projection algorithm. Although a direct comparison of CPU times is not meaning-
ful,2 a clear advantage of Newton’s method is that machine accuracy can be obtained in a few
iterations once the region of quadratic convergence is reached.

As a proof of the effectiveness of the method, the unstable steady solution is computed for
values of the Rayleigh number larger than the critical value up to 2.02×109 (RaW=107.5). The
mesh is uniform and kept fixed to 64×128 up to Ra=108 and increased to 128×256 for

2 The time stepping scheme runs on a vector machine like a Cray-C90 at a speed of about 400 Mflops. The multigrid
Stokes solver performs very poorly on this type of machine and the code was thus run on an SGI O2K.
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larger values. This proved to be enough up to 109 at which there are still seven points in the
thermal boundary layer. Table I gives numerical details for conditions of the simulations. The
pseudo-time step �t is set to 105. In most cases, convergence was obtained in less than 20
Newton steps starting from the preceding Rayleigh number solution (Table I). The efficiency
of convergence, shown in Figure 3, allows one to reduce the norm of the right hand side of
Equation (27) of about a factor ten for each Newton step. Quadratic convergence was not
always obtained because within each Newton step the total number of GMRES iterations was
kept less than a preset number (usually on the order of 100 or so), precluding computation of
the exact increment. The total number of Stokes solves to compute each solution was thus less
than 2000, which can be considered as small compared with the number of time steps. It
should also be said that, as expected, convergence of the method becomes slower as the
Rayleigh number is increased. The major difficulty we have encountered is that the restarted
GMRES algorithm sometimes failed to converge. The residual did not decrease over the
prescribed maximum number of iterations and the norm of the right-hand side of Equation
(27) could not be decreased to machine accuracy. We have tried other solves, such as
biconjugate gradient squared, which did not solve the difficulty. One remedy was to decrease

Table I. Computed steady solutions and corresponding spatial discretization.

6.4×108 2.02×109Ra 6.4×106 6.4×107 1.28×108 1.6×108 1.6×108 1.92×108

128×256 128×256 128×256 128×25664×128Mesh 64×128 64×128 64×128
10 11 13 205 8Step 8 8

Last line gives the number of Newton steps starting from the solution obtained for the immediately smaller
Rayleigh number as an initial guess.

Figure 3. Convergence of Newton’s method for differentially heated cavity at Ra=1.92×108.
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the Rayleigh number increment (since we did not use any continuation of the steady solution
branch at Ra=2.02×109 (�20 times the critical value). Solving these difficulties is the
subject of current research.

Figure 4 shows the temperature fields for each solution. All these solutions share the usual
common flow features: two thin boundary layers along the vertical walls and a vertically
stratified core region. The thermal stratification ��/�z is almost uniform throughout the cavity
core, and except for the first value of the Rayleigh number, it becomes constant and very close
to 1 in units of �T/H at mid-height as shown in Figure 5. Temperature and vertical velocity
profiles across the boundary layer at mid-height are displayed in Figure 6. The thickness of the
thermal and the dynamic boundary layers decrease as the Rayleigh number increases, whereas
the maximum vertical velocity remains almost constant and equal to 0.22. When the distance
to the wall is scaled by Ra1/4, all profiles collapse onto a single curve, which indicates that the
laminar boundary layer scalings [20,21] remain asymptotically valid. Likewise, the correspond-
ing Nusselt number (Table II) continues to scale like Ra1/4 with a proportionality constant very
close to 0.313. This sequence of unstable solutions on the steady solution branch has thus
helped us to establish the asymptotic structure of the steady laminar separated boundary layer
regime, in particular concerning the boundary layer thickness and the vertical stratification in
the core.

4.2. Ca�ity with internal plates

This configuration was selected both because of its relevance to cooling of electronic equip-
ment and as a test of the efficiency of the algorithm for moderately complex geometries. This

Figure 4. Temperature field for steady states for differentially heated cavity, from left to right:
Ra=6.4×106, Ra=6.4×107, Ra=1.28×108, Ra=1.6×108, Ra=1.92×108, Ra=6.4×108, Ra=

2.02×109 (isovalues are: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
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Figure 5. Temperature profiles at mid-width for steady states for differentially heated cavity.

geometry is appropriately described through the use of the phase indicator because the solid
area is small compared to the fluid area. For this configuration, the value of critical
Rayleigh number is slightly above 108 [22].

As for the differentially heated cavity, the implementation of Newton’s method is first
validated by comparing the steady solution for a Rayleigh number of Ra=1.0×107, less
than the critical value, with the asymptotic solution of the non-linear problem with the time
integration scheme. The comparison between both solutions shows a perfect agreement as
the L� norm of the difference is smaller than 10−10. Reaching the steady state with the
unsteady integration to that level of accuracy required integrating the equations for a total
time of 500 with a time step of �t=0.01, that is approximately 5×104 time steps.

Computations were performed with a 128×128 uniform mesh for Rayleigh number
values up to Ra=1.0×107 and with a 256×256 uniform mesh for Ra=1.0×108. For
Ra=1.0×108, 15 Newton steps were necessary to obtain the steady state starting from the
solution at Ra=1.0×107 (Figure 7). For each Newton step, the number of GMRES
iterations was limited to 80 and the 15 Newton’s iterations thus required 1200 solutions of
the Stokes problem, which is again much smaller that the number of time steps. Each
Stokes solution was obtained in about 20 multigrid V-cycles.

Figure 8 shows the temperature and velocity fields of the solution at Ra=1.0×108. The
flow goes up along the vertical plates, crosses the cavity at the top and then flows down
along the cold walls into two thin boundary layers, which rebound against the adiabatic
floor to feed the vertical channels and the vertical boundary layers along the outer heated
walls. Concerning the temperature field, it can be seen that the upper part of the cavity is
almost isothermal at the hot temperature, and that the vertical stratification is limited to
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Figure 6. Temperature and vertical velocity profiles at mid-height for steady states for differentially
heated cavity.

Table II. Nusselt number and correlation.

6.4×106 6.4×107 1.28×108 1.6×108 1.92×108Ra 6.4×108 2.02×109

15.56Nu 27.87 33.37 35.37 36.83 49.53 67.30
0.309 0.312 0.314 0.314Nu/Ra1/4 0.313 0.311 0.317

the lower two thirds of the outer core regions, where it reaches locally values as high as 1.3.
Horizontal temperature profiles show that, in the lower part of the cavity, the temperature is
slightly lower inside the chimneys than in the core region, which is the distinctive mark of the
chimney effect.
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Figure 7. Convergence of Newton’s method for partitioned cavity at Ra=1.0×108; evolution of norm
of residuals of Equation (21) for: u-velocity, (�); w-velocity, (+ ).

Figure 8. Steady state temperature and velocity fields for partitioned cavity at Ra=1.0×108, from left
to right: temperature (isovalues are: 0.1, 0.2, 0.2, 0.4,0.5, 0.6, 0.7, 0.8, 0.9); horizontal and vertical

velocities (isovalues are: 0, �0.05, �0.10, �0.15, �0.20).

For this Rayleigh number Ra=1.0×108, the average Nusselt number along each cold wall
is 44.30. Assuming a classical laminar boundary layer scaling, the Nusselt number correlation
is given by Nu=0.443Ra1/4. This coefficient of proportionality is greater than that obtained
for the differentially heated cavity. We note that the ratio between these two proportionality
coefficients (0.44 versus 0.31) is almost the same as that between the maximum vertical velocity
in the boundary layer (0.22 for the differentially heated cavity against 0.30 here).
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5. DETERMINATION OF THE JACOBIAN SPECTRUM

5.1. General considerations

The stability of any steady solution U0 to infinitesimal perturbations is investigated by letting
any solution be written as U0+U� , where U� = (ũ, w̃, p̃, �� ) is the perturbation vector. Inserting
this expression into the unsteady equations and neglecting second-order terms, yields

�U�
�t

= (L−DNU 0
)U� (30)

where (L−DNU 0
)=LU 0

is the Jacobian of the Navier–Stokes equations evaluated at U0.
Since LU 0

is independent of time, solutions to Equations (30) are of the form U� (x, z, t)=
e�t	(x, z). Inserting this expression into Equation (30) shows that 	(x, z) is an eigenvector of
the Jacobian LU 0

corresponding to the eigenvalue �. Since LU 0
is real, its eigenvalues are

either real or complex conjugates. If all eigenvalues have a negative real part the solution U0

is linearly stable. If one eigenvalue at least is of positive real part then the solution U0 is
linearly unstable.

In bounded domains like those of interest here, the spectrum of the continuous Jacobian
LU 0

consists of an infinite countable number of eigenmodes. After spatial discretization, the
number of eigenmodes of the discrete Jacobian becomes finite and only part of these
eigenmodes is a good approximation of those of the continuous Jacobian. It is therefore
useless, if possible at all, to compute all the spectrum of the discrete Jacobian since the
eigenvalues of interest for stability investigations are those of maximum real part. Computing
these leading eigenvalues is far from trivial. As previously stated, when the configuration at
hand requires large spatial discretization direct methods are not usable, and one has to resort
to iterative methods, which generally consist in applying repeatedly some linear operator on a
given initial vector. It is indeed well known that applying repeatedly an operator on a given
initial vector will eventually polarize the resulting vector sequence along the eigenvector
corresponding to the eigenvalue of largest modulus. Thus, in order to determine the eigenval-
ues of maximum real part of the Jacobian, the general technique is to apply power iterate
methods with a function of the Jacobian that will turn the leading eigenvalues of interest into
those of maximum modules of the function of the Jacobian (see [23]). The best candidate for
this is obviously the exponential of the Jacobian but as previously stated this cannot be done
in practice and one has to use an approximation of the exponential such as (I+�tLU 0

) with
�t�1. Another possible candidate is an inverse power iterate with a shift that will make the
eigenmode closest to the shift dominant [24,25]. This method was successfully applied for real
shifts [24], but still suffers from some unresolved problems for complex shifts [25].

We have used the ARPACK library developed by Sorensen [26] and Lehoucq [27] with the
technique described just above to compute several eigenvalues and the corresponding eigen-
modes. The ARPACK library [10] works on the basis of an Arnoldi–Krylov algorithm, where
an invariant subspace of specified dimension is determined through the repeated action of an
operator acting on a sequence of vectors. It offers the possibility to specify the desired
eigenmodes, such as those of maximum real part or those of maximum modulus. We have tried
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two possibilities: either using directly the Jacobian LU 0
requiring the eigenvalues of maximum

real part or using I+�tLU 0
(where the time step �t has been set to �10−3), requiring the

eigenvalues of maximum modulus.
In either case, the explicit action of the Jacobian on a given vector was performed in two

steps. In the first step, the spatial part was computed explicitly, i.e. the discretized form of the
operator −U0� ·– · �U0+�2 was applied on a vector consisting of (ũ, w̃, �� ). In matrix
notation this reads

�
�
�
�
�
�
�
�
�

− ū
�

�x
−w̄

�

�z
− ·

�ū
�x

+
Pr

�Ra
�2 − ·

�ū
�z

0

− ·
�w̄
�x

− ū
�

�x
−w̄

�

�z
− ·

�w̄
�z

+
Pr

�Ra
�2 Pr

− ·
���
�x

− ·
���
�z

− ū
�

�x
−w̄

�

�z
+

1

�Ra
�2

�
�
�
�
�
�
�
�
�

�
�
�
�
�

ũ

w̃

��

�
�
�
�
�

This step is followed by a projection step in which the resulting velocity field is projected onto
the space of divergence free vector fields. This projection P reads P=I−�(� · �)−1� · and is
performed through a scalar multigrid algorithm for the computation of the pressure.

Either evaluation thus reads PMU 0
or P(I+�tMU 0

), where MU 0
stands for the matrix just

above. We have found that the use of P(I+�tMU 0
) requiring the eigenvalues of maximum

modulus works much better than the other alternative. Note that this is equivalent to
performing an explicit time stepping of the linearized Navier–Stokes equations. The reason
why we have not used a straightforward modification of the implicit–explicit time stepping
scheme (23) is that the corresponding time stepping scheme would not be a polynomial of
LU 0

. Although the eigenvalues would yield good approximations, the corresponding eigenvec-
tor would not be exactly those of LU 0

and this is important for a later purpose.

5.2. Differentially heated ca�ity

We have validated the above procedure on the case of the differentially heated cavity of aspect
ratio 4 which has been extensively studied in the past [12]. In particular the critical Rayleigh
number was determined to be very close to 1.03×108 (RaW=1.61×106). This was determined
from the theoretical relationship relating the amplitude of the oscillations to the difference
Ra−Rac in the case of a supercritical Hopf bifurcation. The finite amplitude solutions were
obtained with a two-dimensional Chebyshev code and enough resolution was used (40×96) so
that spatial convergence was obtained.

We have computed the 100 most unstable eigenmodes of the Jacobian for Ra=1.024×108

(RaW=1.6×106) for three different spatial resolutions consisting of an uniform mesh of
64×128, 128×256 and 256×256. As Figure 9 shows, the most unstable modes of the
spectrum shift to the right as the spatial resolution is increased. This means that a too coarse
spatial resolution makes the steady state solution too stable. In fact, for a spatial resolution of
64×128, the solution becomes unstable for a Rayleigh value slightly above Ra=1.28×108
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Figure 9. Jacobian spectrum for differentially heated cavity at Ra=1.024×108 for three meshes: × ,
64×128; �, 128×256; �, 256×256.

(20 per cent too large), whereas for 128×256, the solution becomes unstable for a Rayleigh
value approximately equal to Ra=1.13×108 (still 10 per cent too large). It should be noted
that the imaginary parts of the eigenvalues seem almost completely unsensitive to an under
resolution as are some eigenvalues of small imaginary part. Note also that the spatial structure
of the eigenmodes, which will be discussed in more detail below, did not change qualitatively
for the three spatial resolutions.

For the larger spatial resolution of 256×256, the spectrum (which of course required the
computation of the corresponding steady state solution) was computed for two values of Ra,
1.024×108 and 1.056×108 (RaW of 1.6×106 and 1.65×106). Figure 10 presents the corre-
sponding spectra, showing that the solution has become linearly unstable for the larger
Rayleigh value. It should also be noted that the eigenvalues of large imaginary part (larger
than the critical one) move fastest to the right as the Rayleigh number is increased. This is
evidenced in Figure 11, which presents the evolution of the real part for the corresponding
eigenvalues. This figure also shows that the most unstable eigenvalue crosses the imaginary
axis for approximately 1.035×108, a value that differs by less than 1 per cent from the
previously determined critical value.

All these eigenvalues and corresponding eigenmodes were obtained requiring the 100
eigenmodes of largest modulus of P(I+�tMU 0

). Parameter studies showed that the optimal
time step was 10−3. Obtaining the 100 eigenmodes required in general between 30 000 and
50 000 evaluations of this operator.

As just stated, the above results were obtained with the use of P(I+�tMU 0
) requiring a

given number of eigenmodes of maximum modulus. Since there is no guarantee that some
modes have not been overlooked, and second that the ordering on the modulus carries over to
the real parts, we performed several tests, requiring an increasing number of eigenmodes,
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Figure 10. Jacobian spectrum for differentially heated cavity for a 256×256 mesh: × , Ra=1.024×108;
�, Ra=1.056×108.

Figure 11. Real part of the most unstable eigenmodes with large imaginary part for differentially heated
cavity at Ra=1.024×108 and Ra=1.056×108 for a 256×256 mesh.

namely 100, 200, 300 and 400. The results are plotted in Figure 13 and it can be seen that
essentially the eigenvalues are determined in decreasing order of their real parts (for computing
limitations this test was performed for the lowest spatial resolution of 64×128).

We now illustrate the dependence of the spectrum over a larger range of Rayleigh values.
For computing limitations, these results were obtained with a spatial resolution of 128×256.
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Figure 12 shows the spectrum of the Jacobian for four Rayleigh numbers of 1.024×108,
1.28×108, 1.6×108 and 1.92×108 (i.e. RaW of 1.6×106, 2×106, 2.5×106 and 3×106).
When the Rayleigh number increases, the Jacobian spectrum globally shifts to the right. While
for 1.024×108 the solution is still linearly stable, the number of unstable modes increases with
Rayleigh number: three for Ra=1.28×198; five for Ra=1.6×108 and six for Ra=1.92×
108. Note that most eigenvalues, at least those of large imaginary part, move parallel to the
real axis, which was not the case for the spectrum of the square cavity with conducting walls
computed by Winters [28]. This is due to the fact that the reference time used here is the
convective time scale, whereas Winters used a thermal diffusion time scale. The present choice
thus allows one to follow the eigenvalues, which depend continuously on the Rayleigh number,
more easily. In particular, it is to be noted that because of the fact that the real part of the
eigenvalues moves fastest to the right for increasing imaginary part, it is not the critical
eigenmode (i.e. the first one to become unstable) that will remain the most unstable one (that
of largest real part) as the Rayleigh number increases. This is to be related to the existence of
multiple branches of unsteady solutions as described in [12]. Note also, however, that not all
the eigenvalues move to the right as the Rayleigh number is increased and some modes become
more stable (those of imaginary part close to 2, for example).

Let us analyse in more detail the 400 more unstable eigenmodes of the spectrum of the
Jacobian for Ra=1.6×108 (Figure 13). This represents a considerable amount of information
and we only discuss here their salient features. The eigenmodes can be, at first glance, divided
in three groups. One group corresponds to complex conjugate eigenvalues of large imaginary
part. Starting from the upper left corner, the real part increases at first when the imaginary
part decreases, until the eigenvalues cross the imaginary axis. The curve turns around, the real
part decreasing upon further decrease of the imaginary part. The second group of eigenvalues

Figure 12. Jacobian spectrum for differentially heated cavity for a 128×256 mesh: × , Ra=1.024×108;
�, Ra=1.28×108; �, Ra=1.6×108; �, Ra=1.92×108.
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Figure 13. Jacobian spectrum for differentially heated cavity at Ra=1.6×108 for a 64×128 mesh: �,
100 first eigenmodes required; + , 100 more eigenmodes; �, 100 more eigenmodes; × , 100 more

eigenmodes.

is the real ones. The third group is the rest, those of imaginary part of order one or less, for
which no distinctive classification criteria show up. Sample eigenmodes for each group are
given in Figure 14 (we just show the temperature component of the eigenmodes, and just its
real part in the case of complex eigenmodes). Eigenmodes labelled by letters a–h correspond
to the first group, those from i to l to the second and m–o to the third. The first group of
eigenmodes is clearly boundary layer modes, as evidenced by the fact that the amplitude in the
core region is very close to zero. Each mode has a well-defined number of structures (we define
a structure as the association of two consecutive patches of alternate sign), starting from eight
for mode c and increasing sequentially. Modes d, e, f, g and h correspond to 9, 10, 15, 19 and
30 structures respectively. Conversely, the number of structures of boundary layer modes of
decreasing imaginary part decreases sequentially, seven for mode b and four for mode a.
Modes i– l are steady modes. These modes will correspond to the deformation of the base flow
due to the time-averaged values of the interactions of the non-linear terms. As can be seen
from their structure, some modes (like i and j ) correspond to deformation of the end regions,
whereas others (like k and l) correspond to changes in the mean stratification of the core
region. Lastly, the third group mostly consists of oscillating internal wave modes. This is
consistent with the Brunt Väisälä cut-off frequency based on a mean core stratification of
C(�T/H) which is, in our time units, �CPr. Modes of imaginary parts close to this value
(�0.85) (mode m) display a vertical structure whereas those of imaginary part close to zero
(modes n and o) display a quasi-horizontal structure, in agreement with the classical dispersion
relationship [29].

The well-known centrosymmetry of the base flow (skew-symmetry for both velocity compo-
nents and temperature and symmetry for pressure) results in eigenmodes that either share this
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Figure 14. Selected eigenmodes for differentially heated cavity at Ra=1.6×108 (letters refer to Figure
13).

property or possess the opposite symmetry (symmetry for the velocity components and
temperature and skew-symmetry for pressure). For the boundary layer modes, those that have
an odd number of structures have the symmetry of the base flow, whereas those with an even
number of structures have the opposite symmetry. The most unstable eigenmode for Ra=
1.6×108 is a boundary layer mode characterized by 8 structures (eigenmode c in Figure 14)
and an imaginary part of 2.69, corresponding to a period of 2.33 (in convective time units).
This is in good agreement with the second branch of solutions found in full non-linear
simulations [12].

5.3. Ca�ity with internal plates

We have computed the spectrum of the Jacobian in the partitioned cavity for a Rayleigh
number of Ra=1.0×108 with a uniform mesh of 256×256. The computation of the 100
eigenmodes of largest modulus of P(I+�tMU 0

) required about 90 000 evaluations of this
operator.

The spectrum is displayed in Figure 15 and some characteristic eigenmodes are shown in
Figure 16. For Ra=1.0×108, the flow is stable and all eigenvalues have negative real parts.
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Figure 15. Jacobian spectrum for partitioned cavity of Ra=1.0×108.

The most unstable eigenmode corresponds to a complex eigenvalue with a barely negative
real part. This will be the first eigenmode to become unstable when increasing Ra. It is
anti-symmetrical with respect with the median vertical axis (anti-symmetry for the tempera-
ture and the horizontal velocity, symmetry for the vertical velocity and the pressure) and
the maximum of fluctuations is located just below the outer plates (eigenmode a in Figure
16). The imaginary part of the eigenvalue corresponds to a period of 12.7, which is in
agreement with the fluctuating temperature field obtained as time-periodic solution of the
non-linear problem for Rayleigh number values just above the critical threshold [22].

Due to the geometry and boundary conditions, the base flow is symmetrical with respect
to the cavity vertical mid plane (symmetry for temperature, vertical velocity and pressure,
anti-symmetry for horizontal velocity). As a consequence all the eigenmodes either share
this property or have the opposite symmetry (anti-symmetry for temperature, vertical veloc-
ity and pressure, symmetry for horizontal velocity). Some eigenvalues are found nearly
superposed, corresponding to almost degenerate eigenmodes, one of them corresponding to
a symmetric eigenmode the other to an anti-symmetric one of similar structure.

As was done for the differentially heated cavity, the spectrum can be divided in three
similar groups: one group for the complex conjugate eigenvalues of large imaginary part, a
second group for the real eigenvalues, and the rest. The eigenvalues with large imaginary
part (e.g. greater than 2.0 here) correspond to channel instability eigenmodes as their
amplitudes are maximum there (eigenmodes b, c, d, e in Figure 16). In fact, each point is a
nearly double eigenvalue corresponding to two almost degenerate eigenmodes: one is sym-
metric and the other is anti-symmetric. Each eigenmode corresponds to a well-defined
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Figure 16. Selected eigenmodes for partitioned cavity at Ra=1.0×108 (letters refer to Figure 15).

number of structures circulating around the cavity starting from eight for modes b and c to 13
for modes d and e. Modes f– i are steady modes. Some of them correspond to deformation in
the recirculating zones at the bottom of the lower boundary layers (eigenmodes f and g in
Figure 16), others affect the thermally stratified part outside the channels (modes h and i ).
Here again, symmetric and anti-symmetric eigenmodes are around close to one another. For
the last group, eigenmodes correspond to oscillating modes with maximum amplitude standing
either at the bottom of the chimneys (modes j and k) or instead in the thermally stratified zone
outside the internal plates (modes l and m).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 175–208



GENERAL METHODOLOGY FOR FLOW INSTABILITIES 201

6. DETERMINATION OF THE ADJOINT JACOBIAN SPECTRUM

6.1. General considerations

Our motivation for computing the spectrum and eigenvectors of the adjoint of the Jacobian
is twofold. Firstly, it is known that the eigenmodes of the adjoint contain the spatial
information concerning the localization of the maximum sensitivity of the corresponding
eigenmode of the Jacobian [11,30]. This has obvious implications in active control, where it
is important to determine the optimum localization of forcing terms. Our second motiva-
tion is to develop a method to reduce the Navier–Stokes equations to a low-order differen-
tial system able to represent the dynamics of the flow at low cost [31,32]. This also has
obvious applications in active control in order to dispose of a fast predictive dynamical
model that one can use in a feedback loop. To this aim, we propose to express the solution
U (x, z, t) of the Navier–Stokes equations at a given Rayleigh number as

U(x, z, t)=U0(x, z)+U� (x, z, t) (31)

where U0(x, z) is the stable or unstable steady solution for the given Rayleigh number. The
non-linear Navier–Stokes equations can then be written as

�U�
�t

= (L−DNU 0
)U� −U� · �U� (32)

=LU 0
U� −U� · �U� (33)

We decompose U� (x, z, t) into the form

U� (x, z, t)=�
k

Ak(t)	k(x, z) (34)

where the 	k(x, z)s are selected eigenvectors of the Jacobian LU 0
and the Ak(t)s are then

the expansion coefficients. Inserting this expansion into the non-linear Navier–Stokes equa-
tions yields

�
k

dAk(t)
dt

	k(x, z)=�
k

�kAk(t)	k(x, z)− �
l,m

AlAm	l(x, z) · �	m(x, z) (35)

where �k is the eigenvalue corresponding to 	k(x, z).
In order to arrive at the differential system, one must take the inner product of Equation

(35) with a set of 
i(x, z) which is bi-orthogonal to 	k(x, z) i.e.

(
i(x, z), 	k(x, z))=�ik (36)
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where ( f, g)=� f� g is the hermitian inner product. Since LU 0
is not self-adjoint, its eigenmodes

are not orthogonal, and the bi-orthogonal set are the eigenmodes 
k(x, z) of the adjoint of the
Jacobian. Upon taking the inner product of Equation (35) with 
k(x, z), one obtains the
non-linear differential system

dAk

dt
=�kAk− �

l,m

�klmAlAm (37)

where �klm= (
k(x, z), 	l(x, z) · �	m(x, z)). Note that this expression is exact and does not
depend on any assumption related to the amplitude of the coefficients.

The adjoint operator is defined relative to the inner product ( f, g)=� f� g such that

(V, LU)= (L*V, U) (38)

We recall here that L and L* are characterized by the same set of eigenvalues. In expanded
form, the definition of the adjoint M*U 0

for the spatial part MU 0
reads

(ũ* w̃* �� * )(MU 0
)

�
�
�
�
�

ũ
w̃
��

�
�
�
�
�

= (ũ w̃ �� )(M*U 0
)

�
�
�
�
�

ũ*
w̃*
�� *

�
�
�
�
�

(39)

Using integration by part and invoking the fact that the velocity fields are divergence free,
M*U 0

can be written in continuous form as
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ū
�

�x
+w̄

�

�z
− ·

�w̄
�z

+
Pr

�Ra
�2 − ·

���
�z

0 Pr ū
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�

Note that this form clearly shows that the transport by the steady flow in M*U 0
takes place in

the opposite direction.

6.2. Numerical implementation

It would be tempting to discretize directly the above operator, which would then be used like
in the direct method, followed by a projection step to extract the divergence part of the
velocity. This is not the correct way to proceed since for the adjoint eigenmodes 
i(x, z) to be
orthogonal to the 	k(x, z)s, the 
i(x, z)s must be the eigenmodes of the adjoint of the discrete
Jacobian that was used to compute the eigenmodes 	k(x, z)s [33]. There are thus two issues
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related to this difficulty. One is linked to the sequence in which these two steps are performed
while the other is linked to the spatial discretization itself.

Assume for instance that the eigenmodes of the Jacobian have been computed using the
operator P(I+�tMU 0

). The formal adjoint of this operator is (I+�tM*U 0
))Pt where the

superscript t indicates transposition and it is the vector that comes from the action of the
above operator on a previous iterate that has to be used to built the Krylov subspace.

Let us now deal with the spatial discretization. It is known that the Laplacian is self-adjoint
with respect to the weighted inner product

( f, g)d=�
i

f(xi)g(xi) dxi

where dxi is the mesh size, even non-uniform. As for the non-linear terms, let us briefly
illustrate the computation of the discrete adjoint, for the temperature field for instance. The
classical space-centered expression resulting from the finite volume integration of the convec-
tive term in conservative form �u�/�x used for the Jacobian reads, with standard notations

ūi+1/2

�� i+1+�� i
2

− ūi−1/2

�� i+�� i−1

2
(40)

Multiplying this equation by �� *i and shifting indices to factor out �� i results in the discret
adjoint form of the convective terms

ūi+1/2(�� *i+1−�� *i )+ ūi−1/2(�� *i −�� *i−1)
2

(41)

which is merely the average value of the convective form u(��*/�x) of the transport term
evaluated at xi+1/2 and xi−1/2.3 Similar although more complex expressions, in particular on
non-uniform meshes, can be derived for the convective terms of the momentum equations.

As for the projection P, it is easy to see that it is self adjoint since, loosely speaking,
(�)t= − (� · ). This demonstration requires appropriate functional analysis. It is guaranteed
here because the use of the staggered grid arrangement yields pressure and velocity fields in
compatible vector spaces.

The adjoint eigenmodes were also computed using the ARPACK library. Requesting the
same number of modes of largest modulus yielded the same set of eigenvalues as for the direct
problem. The eigenvalues were found equal to within 10−10 and the two spectra can be
superposed. There modes are defined to within a rotation in the complex plane (if 
k(x, z) is
an eigenmode, exp(i�)
k(x, z) is also an eigenmode). Although the two sets computed by
ARPACK are indeed bi-orthogonal, appropriate rotations were applied to the adjoint eigen-
modes in order to satisfy the orthonormality condition (36). For a set of almost 400

3 Note that this expression is not conservative. As a consequence, the celebrated skew-symmetric form of the
convective term, which is half the sum the of expressions (40) and (41), and reads ūi+1/2�� i+1− ūi−1/2�� i−1; although
it conserves �� 2 at the discrete level does no longer conserve �� !
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eigenmodes for the Jacobian and as many for the adjoint problem, the inner products are
equal to 1 or 0 with a precision better than 10−10.

6.3. Differentially heated ca�ity

As a representative example, we have chosen to present in Figure 17 the eigenmodes of the
adjoint Jacobian spectrum corresponding to those displayed in Figure 13, for Ra=1.6×108.

As can be seen, the adjoint eigenmodes that correspond to the direct boundary layer modes
also have their maximum amplitude in the boundary layers. It can be seen that they have the
same number of structures that their corresponding direct eigenmodes. Note, however, that
these adjoint modes have their maximum amplitude in the bottom part of the upward
boundary layer and symmetrically in the upper part of the downward boundary layer. One can
conclude that the receptivity of the boundary layer modes will be maximum if they are forced
in the upstream part of the boundary layer at approximately one-third from the starting
corner.

These computations are thus in agreement with the intuitive feeling that boundary layer
modes should be preferably forced at the beginning of the boundary layer. Note however that

Figure 17. Selected adjoint eigenmodes for differentially heated cavity at Ra=1.6×108 (letters refer to
Figure 13).
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in more complex situations like the cavity with internal plates, in which the most unstable
mode is not a boundary layer mode, it is the computation of the adjoint eigenmodes that has
enabled us to find the optimal location of forcing. These experiments are reported in [22].

6.4. Example of low-order dynamical system

The adjoint eigenmodes can be used to compute the coefficients

�klm= (
k(x, z), 	l(x, z) · �	m(x, z))

which appear in the non-linear ordinary differential equations. We have performed these
computations for a Rayleigh number value of 6.4×107 in the aspect ratio 4 cavity, that is
when the steady solution is still stable, using the 100 modes of largest real part as expansion
basis. The differential system (37) was integrated using the same time discretization scheme
(second-order backwards Euler for the time derivative coupled to explicit Adams–Bashforth
for the non-linear terms) as that used for the full Navier–Stokes equations. The Navier–
Stokes equations were integrated in fluctuating form, starting from a random initial field of
small amplitude. The initial values for the coefficients of the differential system were obtained
from the projection of the random field on the expansion basis, which is done by taking the
inner product of this random field with the adjoint eigenmodes.

Figure 18 shows the comparison of the fluctuating temperature at a given monitoring point
between the full non-linear equations and the synthesized temperature corresponding to the
differential system during the transient leading back to steady state. Both signals are virtually
undistinguishable except for very small times when the high frequency of the initial condition
is not adequately represented on the eigenmodes expansion basis. Work is in progress in the
unstable case.

Figure 18. Time trace of fluctuating temperature for differentially heated cavity at Ra=6.4×107;
non-linear computation, full line; dynamical model, dashed line.
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7. CONCLUSIONS

We have presented a general methodology for the investigation of the stability of natural
convection flows in enclosures of complex geometry. This methodology consists of a steady
state solver and of algorithms to compute the leading part of the spectrum of the Jacobian on
a steady state solution and that of the adjoint of the Jacobian. We have implemented the
steady state solver based on Newton’s iterations with the help of a Stokes solver based on an
iterative multigrid algorithm, which is capable of handling both rectangular and complex
geometries, such as a cavity with internal plates. We have been able to follow the steady
solution in a differentially heated cavity of vertical aspect ratio 4 for Rayleigh values more
than one order of magnitude above the critical value. This has allowed us to confirm the
asymptotic structure of the boundary layer regime.

Computation of the leading eigenmodes, those of largest real part of the Jacobian was
performed through the use of the ARPACK library. We have shown that provided spatial
resolution is used the critical Rayleigh number thus determined agrees very well with the
accurate determination previously performed using a time dependent code using Chebyshev
collocation. The advantage of this new approach is the possible computation of several
hundred eigenmodes. In the differentially heated cavity the oscillating eigenmodes can be
classified into boundary layer modes and internal wave modes. In the cavity with internal
partitions, oscillating channel modes have been found. Due to the base flow symmetry, some
nearly degenerate eigenvalues have been found which correspond to modes with different
symmetries.

Care was taken to compute the eigenmodes of the adjoint of the discrete Jacobian, in order
to ensure the orthogonality of the two sets to within machine accuracy. This allowed us to
build a low-order dynamical system by expanding the unsteady solution as the sum of the
steady state solution and of a linear combination of selected eigenmodes. The comparison of
the time evolution of the full non-linear computation with the solution of the differential
system was excellent in a stable case.

We are confident that this general methodology will prove useful in understanding transition
to unsteadiness and chaos of internal flows as well as for controlling them.
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APPENDIX A. NOMENCLATURE

expansion coefficientA�

thermal stratificationC
acceleration of gravityg
height of the enclosureH
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l width of the enclosure
LU 0

Jacobian of the Navier–Stokes operator evaluated on U0

MU 0
spatial part of the Jacobian of the Navier–Stokes operator evaluated on U0

outward normaln
average Nusselt number, reference heat flux is �(T2−T1)/HNu
dimensionless deviation from the hydrostatic pressureP
projection operatorP
Prandtl number, �/�Pr
width based Rayleigh number, =g��TH3/��Ra
width based Rayleigh number, =g��Tl3/��RaW

RF aspect ratio of the enclosure, H/L
dimensionless timet
dimensional temperatureT
cold wall temperatureT1

hot wall temperatureT2

steady stateU0

current iterateUk

vector of perturbationsU�
w (u) vertical (horizontal) component of dimensionless velocity

dimensionless co-ordinates, x*/H (z*/H)x (z)

Greek symbols
� coefficient of volumetric thermal expansion

Kronecker symbol�Ik

time step�t
press increment�

thermal diffusivity�

thermal conductivity�

kinematic viscosity�

�k eigenvalue of the Jacobian LU 0

eigenvector of the adjoint of the Jacobian LU 0

k

eigenvector of the Jacobian LU 0
	k

�T temperature difference between walls, T2−T1

increment, =Uk+1−Uk�Uk

dimensionless temperature, �= (T−T1)/�T�
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22. Gadoin E, Le Quéré P. Characterisation of unstable modes in partitioned cavities. In Heat Transfer 1998: Proceedings

of the 11th International Heat Transfer Conference, Lee JS (ed.). Korean Society of Mechanical Engineers: Kyongiu,
Korea, vol. 3, 1998; 429–434.

23. Christodoulou KN, Scri�en LE. Finding leading modes of a �iscous free surface flow : an asymmetric generalized
eigenproblem. Journal of Scientific Computing 1988; 3: 355–406.

24. Barkley D, Tuckerman LS. Stokes preconditioning for the inverse power method. In Lecture Notes in Physics:
Proceedings of the Fifteenth International Conference on Numerical Methods in Fluid Dynamics, Kutler P, Flores J,
Chattot J-J (eds). Springer: New York, 1997; 75–76.
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